1、集群节点宕机
Nimbus服务器 单点故障,大部分时间是闲置的,在supervisor挂掉时会影响,所以宕机影响不大,重启即可非Nimbus服务器 故障时,该节点上所有Task任务都会超时,Nimbus会将这些Task任务重新分配到其他服务器上运行2、进程挂掉
Worker 挂掉时,Supervisor会重新启动这个进程。如果启动过程中仍然一直失败,并且无法向Nimbus发送心跳,Nimbus会将该Worker重新分配到其他服务器上Supervisor 无状态(所有的状态信息都存放在Zookeeper中来管理) 快速失败(每当遇到任何异常情况,都会自动毁灭)Nimbus 无状态(所有的状态信息都存放在Zookeeper中来管理) 快速失败(每当遇到任何异常情况,都会自动毁灭)3、消息的完整性
从Spout中发出的Tuple,以及基于他所产生Tuple,由这些消息就构成了一棵tuple树,当这棵tuple树发送完成,并且树当中每一条消息都被正确处理,就表明spout发送消息被“完整处理”,即消息的完整性,storm使用Acker确保消息完整性,Acker是拓扑当中特殊的一些任务,负责跟踪每个Spout发出的Tuple的DAG(有向无环图)Acker分为ack确认机制和fail失败处理机制,Spout作为数据源,当拓扑中bolt处理失败时该怎么办?Acker机制可以重发数据到bolt进行重新处理。看下面的例子:
MessageSpout ----> split-bolt ----> write-bolt
MessageTopology
package bhz.topology;import backtype.storm.Config;import backtype.storm.LocalCluster;import backtype.storm.topology.TopologyBuilder;import bhz.bolt.SpliterBolt;import bhz.bolt.WriterBolt;import bhz.spout.MessageSpout;public class MessageTopology { public static void main(String[] args) throws Exception { TopologyBuilder builder = new TopologyBuilder(); builder.setSpout("spout", new MessageSpout()); builder.setBolt("split-bolt", new SpliterBolt()).shuffleGrouping("spout"); builder.setBolt("write-bolt", new WriterBolt()).shuffleGrouping("split-bolt"); //本地配置 Config config = new Config(); config.setDebug(false); LocalCluster cluster = new LocalCluster(); System.out.println(cluster); cluster.submitTopology("message", config, builder.createTopology()); Thread.sleep(10000); cluster.killTopology("message"); cluster.shutdown(); }}
MessageSpout
package bhz.spout;import java.util.Map;import backtype.storm.spout.SpoutOutputCollector;import backtype.storm.task.TopologyContext;import backtype.storm.topology.IRichSpout;import backtype.storm.topology.OutputFieldsDeclarer;import backtype.storm.tuple.Fields;import backtype.storm.tuple.Values;public class MessageSpout implements IRichSpout { private static final long serialVersionUID = 1L; private int index = 0; private String[] subjects = new String[]{ "groovy,oeacnbase", "openfire,restful", "flume,activiti", "hadoop,hbase", "spark,sqoop" }; private SpoutOutputCollector collector; @Override public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) { this.collector = collector; } @Override public void nextTuple() { if(index < subjects.length){ String sub = subjects[index]; //发送信息参数1 为数值, 参数2为msgId collector.emit(new Values(sub), index); index++; } } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("subjects")); } //当bolt 处理成功 ack确认 spout执行ack方法 @Override public void ack(Object msgId) { System.out.println("【消息发送成功!!!】 (msgId = " + msgId +")"); } //当bolt处理失败时,spout调用fail方法,进行重发处理 @Override public void fail(Object msgId) { System.out.println("【消息发送失败!!!】 (msgId = " + msgId +")"); System.out.println("【重发进行中...】"); collector.emit(new Values(subjects[(Integer) msgId]), msgId); System.out.println("【重发成功!!!】"); } @Override public void close() { } @Override public void activate() { } @Override public void deactivate() { } @Override public MapgetComponentConfiguration() { return null; }}
SpliterBolt
package bhz.bolt;import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Map;import backtype.storm.task.OutputCollector;import backtype.storm.task.TopologyContext;import backtype.storm.topology.IRichBolt;import backtype.storm.topology.OutputFieldsDeclarer;import backtype.storm.tuple.Fields;import backtype.storm.tuple.Tuple;import backtype.storm.tuple.Values;public class SpliterBolt implements IRichBolt { private static final long serialVersionUID = 1L; private OutputCollector collector; @Override public void prepare(Map config, TopologyContext context, OutputCollector collector) { this.collector = collector; } private boolean flag = false; @Override public void execute(Tuple tuple) { try { String subjects = tuple.getStringByField("subjects"); if(!flag && subjects.equals("flume,activiti")){ flag = true; int a = 1/0; } String[] words = subjects.split(","); //Listlist = new ArrayList (); //int index = 0; for (String word : words) { //注意这里循环发送消息,要携带tuple对象,用于处理异常时重发策略 collector.emit(tuple, new Values(word)); //list.add(word); //index ++; } //collector.emit(tuple, new Values(list)); collector.ack(tuple);//通知spout处理成功 } catch (Exception e) { e.printStackTrace(); collector.fail(tuple);//通知spout 处理失败 } } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("word")); } @Override public void cleanup() { } @Override public Map getComponentConfiguration() { return null; }}
WriterBolt
package bhz.bolt;import java.io.FileWriter;import java.io.IOException;import java.util.List;import java.util.Map;import backtype.storm.task.OutputCollector;import backtype.storm.task.TopologyContext;import backtype.storm.topology.IRichBolt;import backtype.storm.topology.OutputFieldsDeclarer;import backtype.storm.tuple.Tuple;import backtype.storm.tuple.Values;public class WriterBolt implements IRichBolt { private static final long serialVersionUID = 1L; private FileWriter writer; private OutputCollector collector; @Override public void prepare(Map config, TopologyContext context, OutputCollector collector) { this.collector = collector; try { writer = new FileWriter("d://message.txt"); } catch (IOException e) { e.printStackTrace(); } } private boolean flag = false; @Override public void execute(Tuple tuple) { String word = tuple.getString(0);// Listlist = (List )tuple.getValueByField("word");// System.out.println("======================" + list); try { if(!flag && word.equals("hadoop")){ flag = true; int a = 1/0; } writer.write(word); writer.write("\r\n"); writer.flush(); } catch (Exception e) { e.printStackTrace(); collector.fail(tuple);//通知spout处理失败 } collector.emit(tuple, new Values(word)); collector.ack(tuple);//通知spout处理成功 } @Override public void cleanup() { } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { } @Override public Map getComponentConfiguration() { return null; }}
spout重发机制会带来一个问题:数据重复消费,看上面的例子当WriterBolt执行失败的时候,spout 将hadoop,hbase重发,那么hbase会被WriterBolt再执行一次,目前storm对此没有保障机制,按照业务设计的通用做法就是使用幂等性(比如使用唯一性ID),防止重复消费数据。